Upstream sequences of the myogenin gene convey responsiveness to skeletal muscle denervation in transgenic mice.
نویسندگان
چکیده
Myogenin, as well as other MyoD-related skeletal muscle-specific transcription factors, regulate a large number of skeletal muscle genes during myogenic differentiation. During later development, innervation suppresses myogenin expression in the fetal hind limb musculature. Denervation of skeletal muscle reverses the effects of the nerve, and results in the reactivation of myogenin expression, as well as of other embryonic muscle proteins. Here we report that myogenin upstream sequences confer tissue- and developmental-specific expression in transgenic mice harboring a myogenin/chloramphenicol acetyltransferase (CAT) reporter construct. Using in situ hybridization to analyze serial sections of E12.5 embryos, we found colocalization of CAT and endogenous myogenin transcripts in the primordial muscle of the head and limbs, in the intercostal muscle masses, and in the most caudal somites. Later in development, we observed that the expression of the transgene and endogenous myogenin gene continued to be restricted to skeletal muscle but decreased shortly after birth; a period that coincides with the innervation of secondary myotubes. Furthermore, denervation of the mouse hind limbs induced a 10-fold accumulation of CAT and endogenous myogenin transcripts by 1 day after sciatic nerve resection; a 25-fold increase was observed by 4 days after denervation. Interestingly, we observed that the accumulation of CAT enzyme activity lagged considerably with respect to the increase in CAT transcripts. Our results indicate that the cis-acting elements that temporally and spatially confine transcription of the gene during embryonic development, and that mediate the responses to innervation and denervation of muscle, lie within the upstream sequences analyzed in these studies.
منابع مشابه
The Combined Effect of High-Intensity Interval Training and Metformin on Gene Expression of Myogenin and Myostatin in Skeletal Muscle of Type 2 Diabetic Mice
Background: Myogenin (MyoG) and Myostatin (Mstn) play role in muscle growth and wasting, respectively. The present study aimed to investigate the combined effect of High-intensity Interval Training (HIIT) and Metformin drug (Metf) on gene expression of MyoG and Mstn in skeletal muscle of type 2 diabetic mice. Methods: 25 mice (C57BL/6) were assigned to two groups, including 1) Control © (n=5),...
متن کاملMyogenin and acetylcholine receptor alpha gene promoters mediate transcriptional regulation in response to motor innervation.
Several genes expressed in skeletal muscle are transcriptionally repressed by electrical activity arising from motor innervation and are rapidly induced following denervation. Among these are genes encoding the subunits of the nicotinic acetylcholine receptor (AChR) and the myogenic helix-loop-helix protein myogenin, which activates muscle-specific genes. To understand how electrical activity a...
متن کاملMyogenin and Class II HDACs Control Neurogenic Muscle Atrophy by Inducing E3 Ubiquitin Ligases
Maintenance of skeletal muscle structure and function requires innervation by motor neurons, such that denervation causes muscle atrophy. We show that myogenin, an essential regulator of muscle development, controls neurogenic atrophy. Myogenin is upregulated in skeletal muscle following denervation and regulates expression of the E3 ubiquitin ligases MuRF1 and atrogin-1, which promote muscle p...
متن کاملAccelerated response of the myogenin gene to denervation in mutant mice lacking phosphorylation of myogenin at threonine 87.
Gene expression in skeletal muscle is regulated by a family of myogenic basic helix-loop-helix (bHLH) proteins. The binding of these bHLH proteins, notably MyoD and myogenin, to E-boxes in their own regulatory regions is blocked by protein kinase C (PKC)-mediated phosphorylation of a single threonine residue in their basic region. Because electrical stimulation increases PKC activity in skeleta...
متن کاملAmelioration of Myogenin, Bcl-2 expression and DNA damages in myocytes of Trichinella spiralis-infected mice after immunization with gamma radiation-attenuated larvae
Background: In trichinosis, the presence of muscle larvae inside skeletal striated muscle causes loss of identity and function of myotube through the releasing of myogenin and myosin. Considering the dominant role of vaccination, research on gamma radiation-attenuated vaccine has very promising value. The goal of this study was to determine the efficacy of vaccination with radiation-attenuated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 21 24 شماره
صفحات -
تاریخ انتشار 1993